skip to main content


Search for: All records

Creators/Authors contains: "Wang, Gejiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atomi, Haruyuki (Ed.)
    ABSTRACT Agrobacterium tumefaciens GW4 is a heterotrophic arsenite-oxidizing bacterium with a high resistance to arsenic toxicity. It is now a model organism for studying the processes of arsenic detoxification and utilization. Previously, we demonstrated that under low-phosphate conditions, arsenate [As(V)] could enhance bacterial growth and be incorporated into biomolecules, including lipids. While the basic microbial As(V) resistance mechanisms have been characterized, global metabolic responses under low phosphate remain largely unknown. In the present work, the impacts of As(V) and low phosphate on intracellular metabolite and lipid profiles of GW4 were quantified using liquid chromatography-mass spectroscopy (LC-MS) in combination with transcriptional assays and the analysis of intracellular ATP and NADH levels. Metabolite profiling revealed that oxidative stress response pathways were altered and suggested an increase in DNA repair. Changes in metabolite levels in the tricarboxylic acid (TCA) cycle along with increased ATP are consistent with As(V)-enhanced growth of A. tumefaciens GW4. Lipidomics analysis revealed that most glycerophospholipids decreased in abundance when As(V) was available. However, several glycerolipid classes increased, an outcome that is consistent with maximizing growth via a phosphate-sparing phenotype. Differentially regulated lipids included phosphotidylcholine and lysophospholipids, which have not been previously reported in A. tumefaciens . The metabolites and lipids identified in this study deepen our understanding of the interplay between phosphate and arsenate on chemical and metabolic levels. IMPORTANCE Arsenic is widespread in the environment and is one of the most ubiquitous environmental pollutants. Parodoxically, the growth of certain bacteria is enhanced by arsenic when phosphate is limited. Arsenate and phosphate are chemically similar, and this behavior is believed to represent a phosphate-sparing phenotype in which arsenate is used in place of phosphate in certain biomolecules. The research presented here uses a global approach to track metabolic changes in an environmentally relevant bacterium during exposure to arsenate when phosphate is low. Our findings are relevant for understanding the environmental fate of arsenic as well as how human-associated microbiomes respond to this common toxin. 
    more » « less
  2. null (Ed.)
    Arsenite (AsIII) oxidation is a microbially-catalyzed transformation that directly impacts arsenic toxicity, bioaccumulation, and bioavailability in environmental systems. The genes for AsIII oxidation (aio) encode a periplasmic AsIII sensor AioX, transmembrane histidine kinase AioS, and cognate regulatory partner AioR, which control expression of the AsIII oxidase AioBA. The aio genes are under ultimate control of the phosphate stress response via histidine kinase PhoR. To better understand the cell-wide impacts exerted by these key histidine kinases, we employed 1H nuclear magnetic resonance (1H NMR) and liquid chromatography-coupled mass spectrometry (LC-MS) metabolomics to characterize the metabolic profiles of ΔphoR and ΔaioS mutants of Agrobacterium tumefaciens 5A during AsIII oxidation. The data reveals a smaller group of metabolites impacted by the ΔaioS mutation, including hypoxanthine and various maltose derivatives, while a larger impact is observed for the ΔphoR mutation, influencing betaine, glutamate, and different sugars. The metabolomics data were integrated with previously published transcriptomics analyses to detail pathways perturbed during AsIII oxidation and those modulated by PhoR and/or AioS. The results highlight considerable disruptions in central carbon metabolism in the ΔphoR mutant. These data provide a detailed map of the metabolic impacts of AsIII, PhoR, and/or AioS, and inform current paradigms concerning arsenic–microbe interactions and nutrient cycling in contaminated environments. 
    more » « less
  3. ABSTRACT ArsR is a well-studied transcriptional repressor that regulates microbe-arsenic interactions. Most microorganisms have an arsR gene, but in cases where multiple copies exist, the respective roles or potential functional overlap have not been explored. We examined the repressors encoded by arsR1 and arsR2 ( ars1 operon) and by arsR3 and arsR4 ( ars2 operon) in Agrobacterium tumefaciens 5A. ArsR1 and ArsR4 are very similar in their primary sequences and diverge phylogenetically from ArsR2 and ArsR3, which are also quite similar to one another. Reporter constructs ( lacZ ) for arsR1 , arsR2 , and arsR4 were all inducible by As(III), but expression of arsR3 (monitored by reverse transcriptase PCR) was not influenced by As(III) and appeared to be linked transcriptionally to an upstream lysR -type gene. Experiments using a combination of deletion mutations and additional reporter assays illustrated that the encoded repressors (i) are not all autoregulatory as is typically known for ArsR proteins, (ii) exhibit variable control of each other's encoding genes, and (iii) exert variable control of other genes previously shown to be under the control of ArsR1. Furthermore, ArsR2, ArsR3, and ArsR4 appear to have an activator-like function for some genes otherwise repressed by ArsR1, which deviates from the well-studied repressor role of ArsR proteins. The differential regulatory activities suggest a complex regulatory network not previously observed in ArsR studies. The results indicate that fine-scale ArsR sequence deviations of the reiterated regulatory proteins apparently translate to different regulatory roles. IMPORTANCE Given the significance of the ArsR repressor in regulating various aspects of microbe-arsenic interactions, it is important to assess potential regulatory overlap and/or interference when a microorganism carries multiple copies of arsR . This study explores this issue and shows that the four arsR genes in A. tumefaciens 5A, associated with two separate ars operons, encode proteins exhibiting various degrees of functional overlap with respect to autoregulation and cross-regulation, as well as control of other functional genes. In some cases, differences in regulatory activity are associated with only limited differences in protein primary structure. The experiments summarized herein also present evidence that ArsR proteins appear to have activator functions, representing novel regulatory activities for ArsR, previously known only to be a repressor. 
    more » « less
  4. Summary

    In environments where arsenic and microbes coexist, microbes are the principal drivers of arsenic speciation, which directly affects bioavailability, toxicity and bioaccumulation. Speciation reactions influence arsenic behaviour in environmental systems, directly affecting human and agricultural exposures. Arsenite oxidation decreases arsenic toxicity and mobility in the environment, and therefore understanding its regulation and overall influence on cellular metabolism is of significant interest. The arsenite oxidase (AioBA) is regulated by a three‐component signal transduction system AioXSR, which is in turn regulated by the phosphate stress response, with PhoR acting as the master regulator. Using RNA‐sequencing, we characterized the global effects of arsenite on gene expression inAgrobacterium tumefaciens5A. To further elucidate regulatory controls, mutant strains for histidine kinases PhoR and AioS were employed, and illustrate that in addition to arsenic metabolism, a host of other functional responses are regulated in parallel. Impacted functions include arsenic and phosphate metabolism, carbohydrate metabolism, solute transport systems and iron metabolism, in addition to others. These findings contribute significantly to the current understanding of the metabolic impact and genetic circuitry involved during arsenite exposure in bacteria. This informs how arsenic contamination will impact microbial activities involving several biogeochemical cycles in nature.

     
    more » « less
  5. ABSTRACT Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency. Significant advances have been made in understanding microbe-arsenic interactions and how they influence arsenic redox speciation in the environment. However, even the most basic features of how and why a microorganism detects and reacts to antimony remain poorly understood. Previous work with Agrobacterium tumefaciens strain 5A concluded that oxidation of antimonite [Sb(III)] and arsenite [As(III)] required different biochemical pathways. Here, we show with in vivo experiments that a mutation in aioA [encoding the large subunit of As(III) oxidase] reduces the ability to oxidize Sb(III) by approximately one-third relative to the ability of the wild type. Further, in vitro studies with the purified As(III) oxidase from Rhizobium sp. strain NT-26 (AioA shares 94% amino acid sequence identity with AioA of A. tumefaciens ) provide direct evidence of Sb(III) oxidation but also show a significantly decreased V max compared to that of As(III) oxidation. The aioBA genes encoding As(III) oxidase are induced by As(III) but not by Sb(III), whereas arsR gene expression is induced by both As(III) and Sb(III), suggesting that detection and transcriptional responses for As(III) and Sb(III) differ. While Sb(III) and As(III) are similar with respect to cellular extrusion (ArsB or Acr3) and interaction with ArsR, they differ in the regulatory mechanisms that control the expression of genes encoding the different Ars or Aio activities. In summary, this study documents an enzymatic basis for microbial Sb(III) oxidation, although additional Sb(III) oxidation activity also is apparent in this bacterium. 
    more » « less